Ebola virus experts completed the landmark study

| By | Ebola Vaccine, R&D
0
74

A one-two punch of powerful antibodies may be the best way to stop Ebola virus, reports an international team of scientists in the journal Cell.

The study findings from the Viral Hemorrhagic Fever Immunotherapeutic Consortium (VIC) suggest new therapies should disable Ebola virus’s infection machinery and spark the patient’s immune system to call in reinforcements.

“This study presents results from an unprecedented international collaboration and demonstrates how 43 previously competing labs can together accelerate therapeutics and vaccine design,” says Erica Ollmann Saphire, PhD, professor at Scripps Research and director of the Viral Hemorrhagic Fever Immunotherapeutic Consortium (VIC).

From 2013–2016, West Africa faced the deadliest Ebola outbreak the world has ever seen. By the time the outbreak was declared over, 11,325 people had died. The VIC is an international group of the world’s leading virologists, immunologists, systems biologists and structural biologists working to stop an outbreak on that scale from ever striking again.

The VIC researchers aim to understand which Ebola-fighting antibodies are best—and why. The hope is that the most effective antibodies can be combined in a therapeutic “cocktail.” Unlike an Ebola vaccine, these cocktails could be given to those already infected, which is important for stopping a disease that tends to emerge unexpectedly in remote locations.

Ollmann Saphire and her colleagues in the VIC have published more than 40 studies in just the last five years. This landmark study is the first-ever side-by-side comparison of 171 antibodies against Ebola virus and other related viruses, known as filoviruses. All antibodies in the panel were donated by different labs around the world, and many had not been previously characterized in such extensive detail.

In addition to identifying links between antibody target locations and activity, VIC researchers tested this huge pool of antibodies to reveal which antibodies “neutralized” the virus, why neutralization assays so often disagree, and whether or not neutralization in test tubes adequately predicted how well these antibodies would protect live animals from Ebola virus infection. Unexpectedly, neutralization alone was not always associated with the protective ability of an antibody. Notably, the scientists found nine antibodies that protected mice from infection without neutralizing the virus in test tubes. These antibodies likely fight infection by interacting with an infected person’s immune system, helping orchestrate a better immune response to the virus.

The Viral Hemorrhagic Fever Immunotherapeutic Consortium, or VIC, was established in 2014 to develop life-saving antibody therapeutics against some of the world’s deadliest viruses. The VIC represents a field-wide collaboration in which leading laboratories around the world have united to understand what fetaures lead to antibody-mediated protection againt these viruses and how we can more rapidly discover ideal treatments. The consortium is funded through aNational Institute of Health National Institute of Allergy and Infectious Diseases Centers for Excellence (USA) in Translational Research program grant.